欢迎来到2024深圳国际医疗器械展览会! 上海医博会
媒体中心
当前位置:首页 >> 媒体中心 >> 行业新闻 >> 浏览
行业新闻

各领域医疗机器人分析

时间:2022-3-2 10:58:32来源:本站原创作者:佚名点击:

信息来源:网络

血管介入机器人

定义与综述,包括应用场景等

血管介入机器人综述

血管介入治疗手术机器人是进行血管介入手术的一类机器人,也是手术机器人的一种。血管介入机器人实质是外科手术机器人与血管介入技术的有机结合。机器人操纵介入手术器械,它可以工作在对医生不利的环境,参照医疗图像精确定位,能够没有颤动地执行持续动作,同时快速、准确地通过复杂的轨迹,精确定位到达目标血管,最后在医生的指挥下或自主地完成血管介入手术。血管介入手术是在医学影像设备的导引下,利用穿刺针,导丝,导管等器械经血管途径进行诊断与治疗的操作技术。

资讯 | 各领域医疗机器人分析-智医疗网

ETcath血管介入手术机器人

传统的血管介入手术存在明显弊端:(1)操作者在X射线环境下工作,长期操作对身体伤害很大;(2)现有手术方法技巧性强,风险性高,专科医生手术培训时间长,限制了这项技术的广泛应用;(3)由于操作复杂、手术时间长,疲劳和人手操作不稳定等因素会直接影响手术质量,进而影响患者生存质量。上述缺点限制了血管介入手术的广泛应用。机器人技术与血管介入技术有机结合是解决上述问题的重要途径,机器人操纵手术器械的优点很多,如可以按照医疗图像精确定位,可以没有颤抖地执行持续动作,可以在X射线环境下工作,可以快速、准确地通过复杂的轨迹重新定位。

血管机器人的优势:(1)射线防护:减少医师和患者的辐射剂量;(2)精准操作,临床效果提高。利用图像导航和机械辅助操作,精准定位病变,优化器械输送,器械到位时间缩短,手术精确度提高,减少手术并发症;(3)医患隔离,减少医患之间接触,降低交叉感染,减少传染性疾病的传播;对于传染病患者,机器人可以远程完成手术,降低感染风险;(4)手术掌控, 优化流程;由人机交互变成机机交互;(5)提供真正“远程”手术的潜力。

血管介入机器人应用场景

血管介入手术机器人已被应用到多种外科手术中。在心血管医学中,机器人系统现在通常用于微创房间隔缺损闭合、二尖瓣修复和CABG手术,例如达芬奇机器人。新的机器人系统正在开发用于许多其他适应证,例如经皮冠状动脉介入治疗(PCI)、血管内和微创手术主动脉修复,以及基于导管的心房颤动消融术。目前血管内介入机器人主要运用于冠状动脉、脑血管、外周血管的介入治疗。

冠状动脉介入治疗:Corpath200 系统于 2010年引入临床,首次使用该机器人系统进行经皮冠状动脉介入(percutaneous coronary intervention,PCI)治疗临床研究的结果使 CorPath200 成为目前唯一可用于冠状动脉介入治疗机器人辅助技术的系统,并于2012年获得FDA批准。多中心 PRE-CISE研究的结果于2013年报告,在这项研究中,在164例冠状动脉疾病患者中评估了机器人辅助PCI的安全性和有效性。97.6% 的患者实现了手术成功,围手术期心肌梗死发生率为 2.4%,但未发生其他主要或设备相关并发症。此外,据报告,与血管造影台上的辐射暴露相比,驾驶舱操作员的辐射暴露减少了95.2%。没有报告患者的辐射暴露。

另外,在 Copath200 手术机器人系统的基础上以 CorPath GRX 为代表的介入手术机器人系统,目前,在全球 50 多个心血管科室应用了近 5000 多个病例。除了导丝控制和球囊、支架输送之外,还支持机器人引导导管操作。通过机器的精细操作来模拟人工操作的特点,更加符合介入手术的特点。同时增加机器人操控的多样性,也在一定程度上提高了机器人辅助下手术的成功率,与Corpath200相比,CorPath GRX 提高了在复杂病变的成功率。

脑血管介入治疗 :除了心血管介入辅助机器人以外,机器人外周血管介入及脑血管介入治疗中也在发展。Kalyan等使用 CorPath GRX 完成了 7名患者的选择性诊断性脑血管造影,3 例患者接受了颈动脉血管成形术和支架置入术。所有手术均顺利完成,未出现并发症。2020 年,Vitor 等成功完成了第 1 例脑动脉瘤栓塞术机器人辅助治疗。这代表了神经血管疾病治疗的一个重要里程碑,为远程机器人神经血管内手术的发展打开了大门。而颈动脉的机器人辅助治疗,较神经血管而言较为成熟,Ben 等已经证明在血管内机器人导管技术中,导管的可操作性、准确性和稳定性得到了改善,同时减少了对目标路径的访问,减少了导管壁接触 ,并随后减少了经颅多普勒记录的高强度信号。由此,机器人辅助血管内介入治疗在脑血管领域要逐步开展,并且发挥了机器人辅助技术的优势,可能可以减少导管等对血管的损伤。

外周血管介入治疗:在血管外科的机器人辅助治疗中,Stadler 等报道了一系列广泛的病例,包括310例机器人辅助血管手术,包括61例腹主动脉瘤修复手术。这个小组已经证明了机器人辅助血管技术治疗闭塞性疾病和动脉瘤的可行性。但目前只能完成一些简单的动作 ,如轴向运动,2020 年,Lu 等研发的新型血管内介入机器人辅助系统可实现外周动脉支架辅助血管成形术。通过设计改进,解决了支架置入的相关问题,实现了血管内全过程的远程操作。

血管介入手术机器人研究正逐渐受到更多的关注并且已经成功应用在临床手术中。面对更为复杂的手术环境,血管介入机器人未来发展趋势如下:(1)实现更复杂的手术操作。目前的血管介入机器人只能操作导丝、球囊、支架,而引导导管的送入需要医生手动完成。当前的血管介入机器人不能完成一些复杂的分叉、慢性完全闭塞、严重钙化病变病例。新一代的血管介入机器人需要解决当前设备的局限性,包括与线上设备的兼容性,以及只能单独操作单个设备,从而实现无需医生更换导管即可完成更加复杂的 PCI 病例。(2)人工智能技术的应用。深度学习在计算机视觉领域得到广泛的应用,能够实现精准的目标检测和分割,这对于确定患者 X 光片的病变位置十分有效。利用深度学习实现血管、导管分割,术前创建的3D 血管图像与实时 2D 血管图像进行配准,在三维模型中显示导管位置,为医生提供更直接的视觉反馈。强化学习,示教学习可以更好利用专家已有的知识,从专家演示中学习执行策略,实现自主化的手术机器人系统。(3)远程手术。随着技术的发展,从端与控制端之间信息传递速度提升,提高了远程手术的可靠性。中国偏远地区往往缺少经验丰富的介入医生而不能执行介入手术,而机器人系统能够使医生使用远程干预为多个地区的病人执行手术,降低了偏远地区的医疗成本,缓解医疗资源分配不平衡的问题。

血管介入机器人市场情况

泛血管手术量庞大,全球血管手术机器人市场将蓬勃发展。一方面全球具有庞大的介入手术基数,根据Frost&Sullivan数据,2015~2020年全球泛血管手术从1130万例增长至1430万例,预计2020~2026年将以8.1%的复合增长到2290万例。另一方面,PCI、电生理手术等部分领域手术机器人可用性逐步提升,临床和商业化产品不断增加。因此,全球血管手术机器人发展迅速,根据Frost&Sullivan数据,2020年全球血管手术机器人市场规模为0.31亿美元,预计2026年将增长至16亿美元,复合增速92.7%。

资讯 | 各领域医疗机器人分析-智医疗网

全球泛血管手术机器人市场空间及预测

图片来源:Frost & Sullivan

国内血管手术机器人市场规模较小,渗透率有进一步提高空间。中国心血管疾病的患者人数庞大,且仍持续上升阶段。据推算心血管病现患人数3.30亿,其中脑卒中1300万,冠心病1100万,心血管病仍为城乡居民死亡的首要因素。目前,心血管疾病的治疗中介入治疗是心血管疾病血运重建最重要的手段之一,根据 2020 年全国介入心脏病学论坛的报告,2019 年我国经皮冠状动脉介入治疗总病例数为103.8 万余例,保持着平均 13.5% 的年增长率。脑血管及外周血管的介入治疗也在不断发展。据测算,预计2022年我国血管手术机器人市场规模为2.99亿元人民币,为11.73亿元人民币。预计2026年我国血管机器人手术量约13.9万例,渗透率为3%,有较大提升空间。

资讯 | 各领域医疗机器人分析-智医疗网

中国泛血管手术机器人市场空间及预测

图片来源:Frost & Sullivan

主要技术难点

目前血管介入手术的主要步骤如下:(1)穿刺针按照适合位置穿透皮肤进入血管内,并将导丝插入针管;(2)将血管鞘顺着导丝并在其支撑下送入血管,将导管顺着血管鞘导入血管,缓缓向前推进;(3)在DSA图像引导下,观察导管的路径及管尖的位置,并调整位置与方向直至导管到达病灶;(4)在DSA图像监控下,施行导管诊断及治疗操作,如于室间隔缺损处放置室间隔缺损封堵器,于动脉狭窄处放置支架,行动脉瘤GDC栓塞。

血管介入治疗手术机器人的三大核心技术包括导管设备、图像导航系统和力反馈系统,能有效解决传统的血管介入手术操作步骤复杂、耗时长、医生疲劳和医生受X射线辐射等问题。血管介入手术机器人的机械装置具有导管推进功能,能辅助医生精确稳定地完成导管进退和旋转等手术动作;图像导航系统实现定位跟踪和实时形成图像;导管推进中的力反馈系统辅助医生确保掌握导管与血管壁的互相作用力。

血管介入治疗机器人研究开发主要聚焦于机器人导航定位和辅助介入操作两方面,根据相关机制不同主要分为磁导航操作系统和电机械操作系统。

(1)导管设备

传统导管顶端是预弯的,有着不同的角度和形状。在手术过程中,医生根据不同的血管结构与手术步骤更换不同的导管,这会使手术过程变得复杂。通过设计主动驱动导管,医生能够控制改变导管顶端的形状,选择运动的方向,能够有效地缩短手术时间,提高安全性。按照主动导管的驱动模式可以分为导管顶端产生驱动力和力传递到导管顶端两种模式。第一种模式包括磁力驱动、记忆金属等类型,第二种模式包括绳索驱动和液压驱动等类型 。

Sikorski 等在导管顶端结合永磁体,通过移动电磁铁阵列提供外部产生的变化磁场使导管顶端按照目标方向进行偏转。Sheng 等设计的导管尖端由多个弯曲模块组成,每个模块有一组形状记忆合金丝驱动,通过电流加热使得记忆合金弯曲。Woo 等设计了一个可转向导管。导管有刚性部分和软性部分。两根导线穿过导管连接到软性远端,另一端穿过硬刚部分连接到转轴上,通过旋转转轴使导线牵引导管实现弯曲。

由于简单的工作原理和安全性,绳索驱动的导管是目前应用最为广泛的主动导管。磁驱动导管配合相应的导航系统也得到了较大的发展。记忆金属和液压驱动由于温度变化和液压流体存在泄露的可能限制在临床上的应用。未来主动导管技术在操作精度、安全性、小型化等方面需要进一步的提高。

(2)图像导航系统

医生通过血管成像来判断手术器材的位置,执行血管介入动作。因此血管成像的精度对手术安全十分重要。常见的血管成像技术有数字减影血管造影(Digital Subtraction Angiography,DSA)、计算机断层扫描血管造影(Computed Tomography Angiography,CTA)、磁共振血管造影(Magnetic Resonance Angiography,MAR)和超声波影像。

目前 DSA 在血管介入手术中应用最广泛。造影剂通过心导管快速注入心腔或血管,使心脏和血管腔在 X 线照射下显影。但 DSA 只能呈现平面图像,丢失了深度信息。CTA 能够重建血管 3D 图像,通过术前构建血管模型,并与手术过程的实时 2D 图像配准,精确跟踪手术器材在血管中的位置。MAR 软组织对比度高,没有辐射危害,可获取 2D、3D 图像。但由于心跳、呼吸运动的存在,影响成像的清晰度。超声影像对组织有着良好的显像,可以判断脏器的位置、大小、形态,确定病灶的范围和物理性质,通过超声影像实现对导管的定位。

在手术过程中,医生需要从图像中定位导管、导丝、支架等手术器材。但由于器材与血管结构的相似性,干扰信号,造成医生判别困难。利用算法实现对导管导丝的分割定位,为医生减轻负担。Sam 等 基于 B 样条曲线,提出了能量最小化的导丝跟踪算法,但是该算法需要强制曲线的光滑性。Demircital 等 [30] 采用了基于模型的方法实现对支架的跟踪,该方法依赖于基于 Hessian 的滤波进行预处理,并将支架的金属框架的几何模型拟合到透视图像中。他们的方法需要支架的预定义模型,并被限制为特定的支柱形状。近年来随着深度学习技术发展,应用卷积神经网络可以更精准的实现器材的分割和跟踪。2017年 Ambrosini 等提出了一种基于 U-net 网络模型的全自动分割方法,以当前帧结合前三帧图像作为网络输入,然后使用提取的分支的骨架化和链接来提取导管中心线,单帧检测时间为 125 ms,有望实现实时检测。2018年 Breininger 等以 U-net 为基础,结合残差连接,批量归一化,实现了对支架在 X 射线图像的精确分割,提高手术的精度和安全性。

(3)力反馈系统

一些研究探索了力反馈在血管介入过程的必要性。触觉丧失会使操作者手眼协调困难,医生仅依靠成像难以评价施加在血管壁上力的大小,造成血管壁破裂。在微创手术机器人中结合力反馈技术的目标是实现手术过程的“透明化”, 让手术医生感觉不到是在远程操作,而是直接接触病人 。

实现力反馈的面临两个挑战。首先是接触力的测量。导管与血管壁的接触力可以通过在导管顶端集成压力传感器进行测量。压力传感器通常分为压电式、压阻式和光纤传感器。压电与压阻式传感器有着较好的线性特性,但压电式只能测量静态力,压阻式可同时测量静态与动态力但容易受到电磁干扰。光纤传感器有着良好的动态性能与抗干扰能力,体积较小,近年来越来越多的应用到手术机器人的力传感中。由于在导管顶端结合力传感器导致直径变大,增加了插入的困难,还可以利用位于患者外部的传感器测量导管的近端力来估计导管与血管壁的接触力。

另一个挑战是触觉交互设备如何将力反馈到外科医生。2009 年 Omega 触觉设备已经被用来将导管插入力传递到外科医生的手中,通过控制电机的电流来产生力矩。Jaehong Woo 等人设计了一个三自由度平移运动机构与四自由度旋转运动相结合的主控机构,并通过电机来产生阻力和力矩。电机驱动容易出现不稳定、间隙、力不足和抖动等情况。因此 2018 年 Guo 等人设计了基于磁流变(Magnetorheological,MR)液的主触觉界面,当导管穿过磁流体时,会破坏粒子的链式结构,从而产生阻力,通过调节磁场强度改变阻力大小。该交互界面能够快速改变阻力大小,并且保持医生原有的介入方式。



免责声明

本文来源为其他媒体的内容转载,转载仅作观点分享,版权归原作者所有,如有侵犯版权,请及时联系我们。